

Dallas – Fort Worth TexITE Joint Meeting, 2018

Planning and Simulating Roundabouts in North Texas

Outline

- 1. Simplifying & Explaining Pathing
- 2. Accounting for Large Vehicles
- 3. Showing how Roundabouts are Safer
- 4. Economic Benefits vs. Construction Costs

Explaining Roundabout Pathing

- Generally, lane changing within a roundabout should be avoided
- For complex layouts, important to illustrate vehicle movements

Source: Texas MUTCD

- Signing at roundabout entrances should direct driver to appropriate lane
- Signing within circular roadway tells driver when to exit

Trucks & Emergency Vehicles

- <u>WB-50</u> for *all* roundabouts (unless client requesting otherwise)
- Usually <u>WB-67</u> for suburban/rural roundabouts

1.37 m

[4.5 ft]

ଚ

0

1.22 m

 Find the largest emergency vehicle (usually fire truck) in respective town/city – they must use roundabout without driving on truck apron

20.42 m [67.0 ft] Wheelba

22.40 m 173.5 ft

0.91 m 13.0 ftl

16.15 m [53.0 ft] Trailer

13.87 m [45.5 ft]

Source: AASHTO "Green Book"

1.22 m [4.0 ft]

4.57 m [15.0 ft]

1.28 m

5.30 m [17.4 ft

5.95 m [19.5 ft

Safety

Skip to main content | Notice | Sign Up for our e-Newsletter | Home

About the CMF Clearinghouse | Using CMFs | Developing CMFs | Additional Resources

Home » Search Results

Search Results

There were 158 CMFs returned for your search on "roundabout". [modify your search].

Having trouble deciding between similar CMFs? Use our comparison tool or Check out our FAQs.

Overwhelmed by too many results? See our Search Tips.

▶ Star Quality Rating	Results Control: <u>Collapse All</u> <u>Expand All</u> Click on the links below to expand individual categories.
1 (5) 2 (36) 3 (49) 4 (62) 5 (6)	Category: Bicyclists (6)
	 Category: Intersection geometry (145)
▶ Country	Subcategory: Other (19)
U.S. & Canada (127) International (31)	 Subcategory: Intersection geometry reconfiguration (126)
Crash Type	► Countermeasure: Conversion of intersection into high-speed roundabout
Crash Severity	▶ Countermeasure: Conversion of intersection into low-speed roundabout
▶ Roadway Type	▶ Countermeasure: Conversion of intersection into multi-lane roundabout
Area Type	 Countermeasure: Conversion of intersection into single-lane roundabout
Intersection Type	

- Lots of research done on safety benefits of building roundabouts
- Studies done by NCHRP, FHWA, IIHS, others...
- Crash Modification Factors Clearinghouse gathers data on safety

http://www.cmfclearinghouse.org/

Source: Crash Modification Factors Clearinghouse

Running a Cost-Benefit Analysis

Option	Construction Cost	Yearly Maintenance Cost	Yearly Delay Cost
Existing (Status Quo)	\$0	\$5,500	\$767k
Roundabout	\$3.1 million	\$0	\$287k
Signalization Option #1	\$315k	\$5,500	\$516k
Signalization Option #2	\$195k	\$5,500	\$474k

- Typically, roundabouts are more expensive than traditional intersections, esp. if ROW is needed
- This cost is offset slightly by not having to maintain a signal

Running a Cost-Benefit Analysis

gePatch.com loration

Roundabout Simulation

What are we trying to answer?

- 1. Will a roundabout operate better than a traffic signal or stop control?
- 2. When will the design "break down"?

Roundabout Simulation

HCM vs. Sidra Standard Capacity Models

<u>HCM 2010</u>

- Based on observations at American roundabouts
- More well-known and accepted (in USA)

<u>Sidra Standard</u>

- Takes roundabout geometry into account
- Follow-up headway & critical gap affected by circulating flow rate
- Over-capacity approaches affect circulating flow rate (i.e. result in less delay for downstream approaches)

Roundabout Simulation

HCM 2010 Methodology (brief)

Roundabout Simulation

HCM 2010: Capacity

- Capacity is based on:
 - o # of circulating lanes
 - o conflicting flow rate
 - o driver behavior
- Equations based on empirical observations (in USA)
- From HCM 2010:
 - "U.S. drivers presently seem to display more hesitation ..., which results in lower observed capacities [than that in other countries]."

Calibrating Roundabout Capacity

- HCM suggests calibrating driver behavior to local conditions
- <u>Problem</u>: budget rarely covers researching driver behavior
- <u>Alternative</u>: sensitivity analysis

Roundabout Simulation

Sensitivity Analysis (HCM)

- Sensitivity analysis done by adjusting the critical headway and follow-up headway
- 100% refers to the default parameters used by HCM

Roundabout Simulation

Sensitivity Analysis (Sidra)

- Using the Sidra capacity model, adjust the "Environment Factor" parameter
- For the US, 1.20 is suggested
- For Europe/Australia, 1.00 is suggested

Why Vissim?

- Help visualize how the roundabout will work
- Client wants a video for public presentation
- Complex roundabout layouts
- Using signalization for roundabout metering (also in Sidra)

Vissim: Drawing Roundabout Links

- Strategy: avoid large conflict areas
- Generally avoid running connectors into links; instead, have two connectors join at beginning of link

tantec

Vissim: Priority Rules vs. Conflict Areas

Roundabout

Simulation

- Generally, conflict areas are used in most cases.
 Priority rules are generally more of a "legacy" object
- Using priority rules can allow for better control of critical gap on a per-lane basis
- Takes longer than using conflict areas

Level of Service Considerations

- LOS for <u>Unsignalized Intersections</u> is normally applied to roundabouts
- HCM 2010: "At the time of publication...no research was available on travel perception of quality of service at roundabouts".
- Sidra makes available its own LOS thresholds for roundabouts

	Standard	LOS
Delay = 53s	Signalized Intersection	D
	Roundabout (Sidra)	Е
	Unsignalized Intersection	F

Thank you!

Brian Kellogg, PE, PTP **Transportation Engineer** Stantec, Inc. brian.kellogg@stantec.com Stantec

107231

